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Deformation of giant lipid bilayer vesicles in shear flow

K. H. de Haas, C. Blom, D. van den Ende, M. H. G. Duits, and J. Mellema
Rheology Group, Department of Applied Physics, J. M. Burgers Centre, University of Twente, P.O. Box 217, 7500 AE Ensch

The Netherlands
~Received 14 March 1997!

We describe experimental studies of the deformation of giant lipid bilayer vesicles in shear flow. The
experiments are carried out with a counterrotating Couette apparatus. The deformation depends on the me-
chanical properties of the lipid bilayer, the vesicle radius, and the viscosity of the surrounding Newtonian
liquid. We show that the relevant mechanical parameter is the bending rigidity. A simple model has been
developed that describes the deformation of a vesicle. This model takes thermal undulations of the bilayer into
account. We have obtained a value for the bending rigidity of dimyristoyl-phosphatidylcholine bilayers and its
value has been compared with literature data and with results from micropipette aspiration experiments. From
the measurements we are able to discriminate between unilamellar and multilamellar vesicles.
@S1063-651X~97!12212-7#

PACS number~s!: 87.22.Bt, 68.10.Cr, 82.65.Dp, 83.50.2v
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I. INTRODUCTION

Early experiments on the deformation of liquid drople
immersed in another liquid were carried out by Taylor@1#
with a parallel-band apparatus. He also developed a the
for small deformations of droplets@2# where the interface is
characterized through the surface tension. Subsequently
deformation of red blood cells in a shear flow was inves
gated; see, e.g.,@3#. These experiments were carried out w
a transparent cone-plate rheometer and recently also w
counterrotating Couette apparatus@4#. Also recently, the de-
formation of synthetic polymeric capsules has been m
sured@5#. In all cases the mechanical interfacial properties
interest were the surface shear modulus and a surface vis
ity.

Vesicles are liquid droplets immersed in a liquid, with
interface that consists of a lipid bilayer. Lipid bilayers are
the ordered gel state when temperature is below the cri
or phase-transition temperatureTc ; see, e.g.,@6#. Above Tc
the bilayer is in the liquid-crystalline state. The lipids a
disordered and can move freely through the bilayer.

We report deformation experiments on lipid bilay
vesicles in shear flow. These experiments have been ca
out with a counterrotating Couette apparatus that is prese
in @7#. In this study the lipid dimyristoyl-phosphatidylcholin
~DMPC! has been selected (Tc523 °C). In these experi-
ments temperature is fixed at 30 °C, so the bilayer is in
fluid state. With our apparatus no significant deformation c
be observed when the bilayer is in the gel state.

For a fluid lipid bilayer, a surface shear modulus is n
expected to exist, except at very short time scales@8#. In a
steady shear flow the time scales are relatively long. T
elastic behavior is generally governed by a dilatation mo
lus and the presence of thermal undulations. In the desc
tion of these undulations, the relevant mechanical param
is the curvature modulus or bending rigidity. We assume t
dilatation of the lipid bilayer can be neglected. This assum
tion will be discussed with the experimental results. Thus
vesicles are assumed to have a constant area. Also, the
ume of the vesicle can be assumed to be constant since
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bilayer is impermeable to water on the experimental ti
scale. The vesicle area is larger than that of a sphere with
same volume by an amount that will be called the exc
area. In the physical description of the membrane, an ef
tive surface tension comes into play, which depends on
total excess area.

We have combined a linear theory for the deformation
a liquid droplet with an elastic interface in shear flow with
theory for thermal membrane undulations in order to obtai
simple deformation model. These models and the deriva
of the present model are outlined in Sec. II, followed by
short description of the synthesis of the vesicles in Sec.
Next, in Sec. IV, we will present the experimental resul
The deformation behavior of spherical and nonspher
vesicles will be presented. Our model will be applied to t
case where vesicles are initially spherical. From this we
able to obtain a value for the bending rigidity. Furthermo
the distinction between unilamellar and multilamellar bila
ers can be made. We also obtain values for the effec
surface tension of the lipid bilayer. We conclude in Sec.

II. THEORY

A. Thermal undulations of a vesicle bilayer

In this section we present a brief review of the descript
of the dynamics of a vesicle surface. It is based on the
ticles of Milner and Safran@9# and van der Linden, Bedeaux
and Borkovec@10#. The vesicle shape is represented by
expansion in spherical harmonics@9#:

r ~u,f,t !5aS 11(
l ,m

ulm~ t !Ylm~u,f! D , ~1!

with Ylm(u,f) the normalized spherical harmonic function
ulm(t) their amplitudes,l 50,1,2, . . . , and2 l<m< l . The
apparent radiusa is determined under the assumption th
the vesicle volume is constant:
7132 © 1997 The American Physical Society
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V5
4p

3
a3. ~2!

The vesicle area is given by

A54pa21
a2

2 (
l 52

uulmu2~ l 12!~ l 21!. ~3!

Third- and higher-order terms inulm are neglected. As men
tioned previously, we assume that the total areaA is con-
stant.

The potential energy of a bilayer with surface tensions
and bending rigiditykc is given by Helfrich’s expression
@11#

U5E @s1 1
2 kc~C2C0!2#dA, ~4!

with C the curvature of the surface andC0 the natural cur-
vature of the surface. The surface tension is a Lagrange m
tiplier to ensure that the surface area remains constant.

From the Boltzmann equipartition theorem we are n
able to determine the amplitude of each spherical harmo
mode because the vesicle is placed in a thermal reser
The energy that is stored in each mode equals1

2 kT, with the
Boltzmann constantk and temperatureT. We restrict this
description to small undulation amplitudes and obtain@9#

^uulmu2&5kT„~ l 12!~ l 21!$kc@ l ~ l 11!24w12w2#

1sa2%…21, ~5!

with w5 1
2 aC0 . The mean excess area is then

Aexc

A
5

A24pa2

A
5

kT

8p (
l 52

l max 2l 11

kc@ l ~ l 11!24w12w2#1sa2 .

~6!

The upper cutoff isl max[pa/b, with b a microscopic length.
Its smallest value is on the order of molecular dimensio
because it is a continuum description. For largel max we can
rewrite Eq.~6! as an integral:

Aexc

A
5

kT

8p E
2

l max 2l 11

kc@ l ~ l 11!24w12w2#1sa2 dl

5
kT

8pkc
ln S p2

b2 1
s

kc

4p~624w12w2!

A
1

s

kc

D , ~7!

where we usedl max
2 @lmax24w12w2 because we expect tha

w is of the order of unity or less. The right-hand side r
sembles the Helfrich equation for thermal undulations in
flat square lipid membrane@12#:

Aexc

A
5

kT

8pkc
ln S p2

b2 1
s

kc

p2

A
1

s

kc

D , ~8!
ul-

ic
ir.

s

-
a

with b the same microscopic length as in the quasispher
description. Usually we have

p2

b2 @
s

kc
@

p2

A
, ~9!

with b'1029 m @12#, s'1028– 1023 Nm21 @13#, kc
'10219 J @13#, andA'1029 m2. When Eq.~9! is valid, rep-
resentations~7! and ~8! are equivalent.

B. Excess area of a deformed vesicle

In Sec. II A we obtained an expression for the excess a
of a lipid bilayer vesicle at rest. It is based on thermal eq
librium and equipartition of energy for each undulatio
mode. When a vesicle is deformed in a shear flow we hav
different situation because it is not at equilibrium anymo
The lipid bilayer rotates around the vesicle interior and
kept at a constant temperature. We assume that equipart
may be used for the deformed lipid bilayer. Under a mic
scope we observe the apparent vesicle shape. We assum
this shape is a projection of an ellipsoid or the projection
a linear combination of second-order spherical harmo
functions. The vesicle areaA is supposed to be constant an
therefore the area is given by

A5Ae
exc1Ae , ~10!

whereas for the spherical vesicle at rest

A5As
exc1As , ~11!

with As andAe the areas of a sphere and an ellipsoid, resp
tively. Setting both equations equal to each other and us
Eq. ~6!, we obtain

Ae2As

A
5

kT

8p (
l 52

l max 2l 11

kc@ l ~ l 11!24w12w2#1se a2

2
kT

8p (
l 852

l max 2l 811

kc@ l 8~ l 811!24w12w2#1ss a2 .

~12!

The surface tension is considered to be a Lagrange m
plier, and from this equation it follows thatse is larger for
the deformed vesicle than for a spherical vesicless at rest. A
new equilibrium is found after deformation and the amp
tudes of the different modes settle at different values.

For large l max we can rewrite Eq.~12! as an integral,
which results in

Ae2As

A
5

kT

8pkc
ln F S 4~624w12w2!pkc1Ass

4~624w12w2!pkc1Ase
D

3S p2kc1b2se

p2kc1b2ss
D G . ~13!

With the estimates~9! we finally obtain

Ae2As

A
5

kT

8pkc
ln S se

ss
D . ~14!
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With Eq. ~9! we obtain exactly the same expression as fr
Helfrich’s model for flat membranes.

C. Vesicle deformation model in shear flow

The deformation of an initially spherical vesicle is d
scribed by the Taylor deformation parameterD,

D5
L2B

L1B
, ~15!

whereL andB are the lengths of the major and minor ax
of the deformed vesicle, respectively. Figure 1 shows a sc
matic image of the projection of a deformed vesicle. T
average vesicle shape in a shear flow can be written as

^r ~u,f!&5r 812r 8D sin2u sinf cosf, ~16!

where the effective radiusr 8 depends slightly onD. This is
the theoretical shape of an elastic capsule~or liquid droplet!
for small deformations in shear flow@14#. According to Eq.
~1!, this shape can be represented by a linear combinatio
spherical harmonic functions

r ~u,f,t !5a@11u00Y00~u,f!1u2,22Y2,22~u,f!

1u22Y22~u,f!#, ~17!

with u00, u2,22 , andu22 functions of the deformation param
eter. With the conserved vesicle volume assumption for
shape, the apparent vesicle area is related toD through

Ae2As

As
5

8D2

15
, ~18!

which follows directly from Eq.~3!. To first order in the
relative excess area, the quantity (Ae2As)/As equals (Ae
2As )/A. The substitution of Eq.~18! into Eq.~14! gives the
coupling between our experiment and the undulation the

Next the relation between the deformation parameter
shear rate remains to be evaluated. We have derived an
pression based on the work of Oldroyd@15,16#. His model
describes the viscoelastic behavior of a monodisperse dis
sion of elastic capsules with negligible wall thicknesses t
are immersed in a Newtonian liquid. It is a cell model bas
on Stokes’s equations and is valid for small deformatio
The shape of a single deformed vesicle in a steady flow
recovered by taking the limits of zero vesicle volume fra
tion and zero frequency. A straightforward calculation giv

FIG. 1. Image of a deformed vesicle. The dashed line marks
plane of zero velocity.
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D5ahġ
5m115k

8ms18mk112sk
, ~19!

with ġ the shear rate,s the surface tension,k the dilatation
modulus,m the shear modulus, andh the viscosity of the
exterior liquid. The shape of the vesicle is described by
~17!. The shear modulus has to be set equal to zero and
find

D5
5ah

4s
ġ. ~20!

Oldroyd does not consider the influence of the bending rig
ity, but for s@kc /a2 its contribution is negligible@14#. For
the previously given estimates this is indeed the case.

We will use Eq.~20! for the description of the deforma
tion of a vesicle as a function of shear rate. Previously it w
argued that the surface tensionse of the lipid bilayer varies
with the amount of excess area through Eq.~14!. This sur-
face tension is substituted into Eq.~20! with s5se . The
apparent vesicle area is eliminated by substitution of Eq.~18!
into Eq. ~14! and the following relation between the defo
mation parameter and shear rate results:

ġ5
4ssD

5ah
exp S 64pkc

15kT
D2D . ~21!

Fits of Eq.~21! to the experimental data give thess andkc
values.

III. EXPERIMENT

Dimyristoyl-phosphatidylcholine lipids are purchase
from Lipid Products Ltd. United Kingdom and are use
without further purification. The vesicles are prepared with
hydration method similar to that of Reeves and Dowb
@17#. A lipid solution in a mixture of chloroform and metha
nol is dried by evaporation. The remaining film is gent
brought in contact with distilled water, a low-ionic salt sol
tion, or another nonionic solution. The lipids swell by th
intake of water and with time giant vesicles are formed sp
taneously.

The main advantage of this method is that vesicles w
diameters of more than 50mm can be formed. Furthermore
the method is very simple. The main drawback is that m
tilamellar vesicles and, depending on the conditions, non
sicular structures are formed in addition to unilamel
vesicles.

We have stimulated the formation of unilamellar vesic
in a way similar to the synthesis described in@18#. The sur-
face of a thin Teflon disk with a 1.6 mm diameter is roug
ened with emery paper. It is put in a glass bottle and kep
37 °C. About 0.05 ml of a 10-mg/ml DMPC solution i
spread out across its surface and the chloroform-meth
mixture evaporates almost immediately. The film is ne
dried for a few hours. Then the disk is covered gently with
few centimeters of distilled water at 37 °C. The sample
stored for 24 h at 37 °C. After a few hours a white cloud c
be observed. This covers the entire Teflon disk. It grows t
thickness of about 1 mm over 24 h. The vesicle cloud
dispersed in water by gently shaking the sample. This d
persion is further diluted before use.

e
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IV. RESULTS

A. Observation of deformed vesicles

The vesicles can be distinguished into two groups:~i!
vesicles that are initially spherical and~ii ! vesicles that are
initially nonspherical.

~i! At low shear rates, the deformation of an initial
spherical vesicle is too small to observe anything but a ro
tion of the vesicle. At sufficiently high shear rates it deform
into a steady shape with a fixed orientation. For small de
mations this orientation is about 45° with respect to
streamlines. The orientation decreases with increasing s
rate. We observe tank treading: The membrane circul
around the interior of the vesicle. An example of deform
tion of an initially spherical vesicle is given in Fig. 2. With
radius of about 55mm it is one of the largest vesicles use
The vertical direction in the pictures is the radial direction
the gap. The inner cylinder is situated at the upper side
the outer cylinder at the lower side of each picture. The fl
at the upper side moves to the left and at the lower sid
moves to the right. These images have been digitized wi
frame grabber and the quality of the bit maps has been
proved.

~ii ! At low shear rates, an initially nonspherical vesic
deforms slightly and undergoes a periodic flipping moti
comparable to the motion of rigid ellipsoids. The vesic
rotates around its center, but the angular velocity depend
its orientation with respect to the streamlines. When
shear rate is increased, the vesicle starts to oscillate wh
is still rotating. The deformation parameter is now a perio
function in time and is largest when the orientation is ab
45° and smallest when it is245°. As is the case with ini-
tially spherical vesicles at sufficiently high shear rates,
vesicle changes into a steady deformed shape with a fi

FIG. 2. Examples of a deformed vesicle with a 55mm radi-
us: ~a! ġ50.0 s21, ~b! ġ51.0 s21, ~c! ġ52.0 s21, ~d! ġ
54.0 s21, ~e! ġ56.0 s21, ~f! ġ58.0 s21, ~g! ġ510.0 s21, ~h!
ġ512.0 s21, and~i! ġ515.0 s21.
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orientation and tank treading is observed.
Our observations agree with observations reported in

erature for emulsion droplets, red blood cells, and synth
capsules. The deformation of an initially spherical vesi
resembles the deformation of an emulsion drop. The flipp
motion of nonspherical vesicles also has been observed w
a sufficiently small shear stress is applied to red blood c
~see, e.g.,@19#!, for which a similar transition to a stead
deformed shape with a fixed orientation, and tank tread
are also observed. The oscillating behavior has also b
observed with synthetic capsules@5#.

B. Application of the deformation model

A typical result for the shear rate dependence on the
formation parameter of an initially spherical vesicle is giv
in Fig. 3. This is the same vesicle that is shown in Fig. 2. T
possible uncertainty is determined by the size of the ves
with respect to the size of the window of observation. T
deformation parameter is a nonlinear function of shear r
The least-squares fit to Eq.~21! is shown. We have measure
the deformation of 26 vesicles that were initially spheric
For each vesicle we have obtained the bending rigidity a
the effective surface tension of the undeformed vesicle. T
bending rigidities are displayed in Fig. 4. For convenien
we plot the bending rigidity versus the vesicle radius. We
that the experimental error can be rather large.

FIG. 3. Deformation parameter of the vesicle from the previo
example.

FIG. 4. Bending rigidity of 26 vesicles.
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Representing each value ofkc by a normalized Gaussia
probability distribution function with a width determined b
the uncertainty inkc , we obtain the distribution of Fig. 5
when we add up all distributions. This distribution sugge
the presence of a discretization in the possible values of
bending rigidity, where the first peak may be due to uni
mellar vesicles, the second due to bilamellar vesicles, an
on. Thus, for unilamellar DMPC bilayers, we obtainkc

53.060.3 kT5(1.360.1)310220 J. This is somewha
lower than the literature values forkc : (3.5– 6.5)310220 J
at 26 °C@20#, 5.6310220 J at 29 °C@21#, 11.5310220 J at
30 °C @22#, and 24310220 J at 26 °C@23#. The second lit-
erature value was determined from a micropipette exp
ment and the other values were obtained with vesic
contour spectroscopy. For both methods also a distinc
between unilamellar and multilamellar vesicles was a
made. In the vesicle-contour spectroscopy experiments a
tribution like that in Fig. 5 was found. These experimen
result in sharper peaks due to a smaller experimental e
Duwe and Sackmann@22# observe that small amounts of
short bipolar lipid may reduce the bending rigidity down
the order of one kT. The only possibility that might expla
our relatively lowkc value is the possible presence of tra
impurities in our lipids. We have tested the lipid batch w
thin-layer chromatography and observed a weak second s
indicating the presence of a small fraction of impurities.
addition, we have carried out a micropipette aspiration
periment, which resulted in comparable low values forkc
while the dilatation modulusk also turned out to be some
what lower than the literature values@21#. This experiment is
described in Ref.@24#.

We calculated the effective surface tensionss and the
results are presented in Fig. 6. The values range from 127

to 1025 Nm21. Kummrow and Helfrich@25# measured the
deformation of lipid vesicles under the influence of an el
tric field and determined the effective tension for separ
vesicles. These values are on the order of 1029 Nm21. They
mention that vesicles look rigid abovess51026 Nm21, i.e.,
the thermal undulations are not visible to the eye, as was
case for our vesicles.

It is possible to determine the effective tensions during
deformation with Eq.~14!. At most, it is one order of mag
nitude larger thanss . Therefore, the assumption of neg

FIG. 5. Distribution of the bending rigidity.
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gible dilatation is correct. The increase of the real area du
dilatation is given by

DAd

A
5

se2ss

k
. ~22!

Literature values of the dilatation modulus are on the or
of 0.1 Nm21. We have verified those values with a microp
pette experiment; see@24#. We found values of abou
0.05 Nm21. A comparison of Eqs.~22! and ~14! with esti-
mates ofse , ss , and k shows that the increase of are
induced by dilatation is at least one order of magnitu
smaller than the apparent area increase. Furthermore
conclude that our assumption~9! holds for ourkc and ss
values. Thus application of Eq.~14! is allowed in our case.

V. CONCLUSIONS

We have measured the deformation of giant DMPC
layer vesicles in shear flow. The measurements have b
carried out with a counterrotating Couette apparatus that
developed recently. The qualitative deformation behavior
initially spherical vesicles corresponds to that of emuls
droplets. The qualitative deformation behavior of initial
nonspherical vesicles corresponds to that of red blood c
and synthetic polymeric capsules.

We have developed a simple model that describes
deformation parameter as a function of shear rate. It i
combination of a linear theory of liquid droplets with a
elastic interface and a theory that describes the vesicle in
face in terms of thermal undulations. From this model
becomes clear that at low shear rates the deformation be
ior is mainly due to the dynamics of the undulating surfa
while dilatation of the surface is negligible.

We have estimated the bending rigidity to bekc5(1.3
60.1)310220 J. We learned from the distribution of th
bending rigidities for the separate vesicles that many of th
are not unilamellar. Multilamellar vesicles may be expec
because of the nature of the preparation method. The ob
vation of a discretization in the bending rigidities for ea
vesicle has also been observed in various experiments
were reported in literature. In future experiments, purifi
lipids need to be used for determining the influence of i
purities in the bilayer on the bending rigidity.

FIG. 6. Effective surface tension of the undeformed vesicle
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