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Deformation of giant lipid bilayer vesicles in shear flow
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(Received 14 March 1997

We describe experimental studies of the deformation of giant lipid bilayer vesicles in shear flow. The
experiments are carried out with a counterrotating Couette apparatus. The deformation depends on the me-
chanical properties of the lipid bilayer, the vesicle radius, and the viscosity of the surrounding Newtonian
liquid. We show that the relevant mechanical parameter is the bending rigidity. A simple model has been
developed that describes the deformation of a vesicle. This model takes thermal undulations of the bilayer into
account. We have obtained a value for the bending rigidity of dimyristoyl-phosphatidylcholine bilayers and its
value has been compared with literature data and with results from micropipette aspiration experiments. From
the measurements we are able to discriminate between unilamellar and multilamellar vesicles.
[S1063-651%97)12212-1

PACS numbsg(s): 87.22.Bt, 68.10.Cr, 82.65.Dp, 83.50¢

[. INTRODUCTION bilayer is impermeable to water on the experimental time

scale. The vesicle area is larger than that of a sphere with the

Early experiments on the deformation of liquid dropletssame volume by an amount that will be called the excess

immersed in another liquid were carried out by Tayldf  area. In the physical description of the membrane, an effec-

with a parallel-band apparatus. He also developed a theomyve surface tension comes into play, which depends on the

for small deformations of droplef2] where the interface is total excess area.

characterized through the surface tension. Subsequently, the We have combined a linear theory for the deformation of
deformation of red blood cells in a shear flow was investi-a liquid droplet with an elastic interface in shear flow with a
gated; see, e.g.3]. These experiments were carried out with theory for thermal membrane undulations in order to obtain a
a transparent cone-plate rheometer and recently also with @mple deformation model. These models and the derivation
counterrotating Couette apparafds. Also recently, the de-  f the present model are outlined in Sec. I, followed by a
formation of synthetic polymeric capsules has been meagnort description of the synthesis of the vesicles in Sec. Ill.
sured[5]. In all cases the mechanical interfacial properties OfNext, in Sec. IV, we will present the experimental results.

interest were the surface shear modulus and a surface viscoﬁ-1e deformation behavior of spherical and nonspherical

ity. vesicles will be presented. Our model will be applied to the
case where vesicles are initially spherical. From this we are
ble to obtain a value for the bending rigidity. Furthermore,

Vesicles are liquid droplets immersed in a liquid, with an
interface that consists of a lipid bilayer. Lipid bilayers are in
the ordered gel state when temperature is below the critic

or phase-transition temperatufe: see, e.q.[6]. Above T %he distinction between unilamellar and multilamellar bilay-
the bilayer is in the liquid-crystalline state. The lipids are €S can be made. We also obtain values for the effective

disordered and can move freely through the bilayer. surface tension of the lipid bilayer. We conclude in Sec. V.

We report deformation experiments on lipid bilayer
vesicles in shear flow. These experiments have been carried
out with a counterrotating Couette apparatus that is presented Il. THEORY
in [7]. In this study the lipid dimyristoyl-phosphatidylcholine
(DMPC) has been selectedl{=23 °C). In these experi- . ] ) . o
ments temperature is fixed at 30 °C, so the bilayer is in the In this section we present a brief review of the description
fluid state. With our apparatus no significant deformation car®f the dynamics of a vesicle surface. It is based on the ar-
be observed when the bilayer is in the gel state. ticles of Milner and Safra[\9]_ and van der Linden, Bedeaux,
For a fluid lipid bilayer, a surface shear modulus is notand Borkoved10]. The vesicle shape is represented by an
expected to exist, except at very short time sciisin a  €xpansion in spherical harmonifg:
steady shear flow the time scales are relatively long. The
elastic behavior is generally governed by a dilatation modL_J- r(0,¢,t)=al 1+ > Um(t)Ym(6.¢)], )
lus and the presence of thermal undulations. In the descrip- I.m
tion of these undulations, the relevant mechanical parameter
is the curvature modulus or bending rigidity. We assume that
dilatation of the lipid bilayer can be neglected. This assumpwith Y,(6,¢) the normalized spherical harmonic functions,
tion will be discussed with the experimental results. Thus theu;(t) their amplitudes)=0,1,2 ..., and—I<m=I. The
vesicles are assumed to have a constant area. Also, the v@lpparent radius is determined under the assumption that
ume of the vesicle can be assumed to be constant since thige vesicle volume is constant:

A. Thermal undulations of a vesicle bilayer
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4w with b the same microscopic length as in the quasispherical
V=—-a’ (2)  description. Usually we have
2 2
The vesicle area is given by TS
b2 k. A ©
2
a
A=4ma’+ > 22 luiml?(1+2)(1-2). ) with b~10°m [12], ¢~108-103Nm™t [13], k.

~10 °J[13], andA~10"° m? When Eq.(9) is valid, rep-

Third- and higher-order terms in,, are neglected. As men- fesentation$?) and(8) are equivalent.
tioned previously, we assume that the total afe& con-

stant. B. Excess area of a deformed vesicle
The potential energy of a bilayer with surface tension |y Sec. Il A we obtained an expression for the excess area
and bending rigidityk; is given by Helfrich’s expression of 3 lipid bilayer vesicle at rest. It is based on thermal equi-
[11] librium and equipartition of energy for each undulation
mode. When a vesicle is deformed in a shear flow we have a
U:f [0+ Lk (C—Cg)2]dA, (4) differ(_ant sityation because it is not at eqyilibr_ium_anymor(_e.
The lipid bilayer rotates around the vesicle interior and is

kept at a constant temperature. We assume that equipartition

LD ay be used for the deformed lipid bilayer. Under a micro-
vature of the surface. The surface tension is a Lagrange muk:,ne \ve observe the apparent vesicle shape. We assume that
tiplier to ensure that the surface area remains constant. .« shape is a projection of an ellipsoid or the projection of

From the Boltzmann equipartition theorem we are NOW3 linear combination of second-order spherical harmonic

able to determine the a.mpIiFude of ea_ch spherical harmon',ﬁmctions. The vesicle area is supposed to be constant and
mode because the vesicle is placed in a thermal reservoifarefore the area is given by

The energy that is stored in each mode eqg#f§, with the
Boltzmann constank and temperaturd. We restrict this A=A+ A, (10)
description to small undulation amplitudes and ob{&h

with C the curvature of the surface a}, the natural cur-

whereas for the spherical vesicle at rest
(uiml D =KT((1+2)(1 = D{kJ1(1 + 1) — 4w+ 2w?]

+oaZ}) L, 5) A=AJHA, (11)

with Ag andA, the areas of a sphere and an ellipsoid, respec-
tively. Setting both equations equal to each other and using
Eq. (6), we obtain

with w=3aC,. The mean excess area is then

Aec A—4ma’ KT T 21+1
A A 871 kJI(I+1)—4w+2w?]+oa®’ Ag—A, KT 'max ol 41
©®) A 87 kJl(I+1)—4w+2wi+to, &
The upper cutoff i ,,,=ma/b, with b a microscopic length. KT 'max 21741
Its smallest value is on the order of molecular dimensions _ - 5 N
because it is a continuum description. For latgg, we can 8w i, KJ[I'(I'+1)—4w+2w*]+osa
rewrite Eqg.(6) as an integral: (12
Aixc: k_T f'max 21+1 dl The surface tension is considered to be a Lagrange multi-
A 8w ), kJl(I+1)—4w+2w?]+oa® plier, and from this equation it follows that, is larger for

) the deformed vesicle than for a spherical vesiglat rest. A

— g new equilibrium is found after deformation and the ampli-
kT b? " k. tudes of the different modes settle at different values.
- 81k, In Am(6—4w+2w?) o |’ (7) For largel o We can rewrite Eq(12) as an integral,
+— which results in
A K
_ _ 2
where we used?_>I.,.—4w+2w? because we expect that Ae As: KT In (4(6 4W+2W2)WKC+AUS)
w is of the order of unity or less. The right-hand side re- 8k, 4(6—Aw+2wT) 7k + Ao
sembles the Helfrich equation for thermal undulations in a 72K+ b2
flat square lipid membrand.2]: (m) . (13
772 g . . . .
—+— With the estimate$9) we finally obtain
Aexc KT | b k. g
A 8wk, n ™ o |’ ® Ae—As kT e 14
X—i_k_c A _87chn os)’ (14
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S5u+ 15«
+8uk+120k’

D=any 8o (19

with y the shear ratey the surface tensiong the dilatation
modulus, u the shear modulus, ang the viscosity of the
exterior liquid. The shape of the vesicle is described by Eq.
(17). The shear modulus has to be set equal to zero and we
find

_5a7;.

FIG. 1. Image of a deformed vesicle. The dashed line marks the 4o
plane of zero velocity. Oldroyd does not consider the influence of the bending rigid-
ity, but for o>k./a? its contribution is negligiblé14]. For
With Eg. (9) we obtain exactly the same expression as fromthe previously given estimates this is indeed the case.

(20

Helfrich’s model for flat membranes. We will use Eq.(20) for the description of the deforma-
tion of a vesicle as a function of shear rate. Previously it was
C. Vesicle deformation model in shear flow argued that the surface tensiog of the lipid bilayer varies

with the amount of excess area through Ety). This sur-

face tension is substituted into ER0) with o=0,. The

apparent vesicle area is eliminated by substitution of(E8).
L—B into Eq. (14) and the following relation between the defor-

5B’ (15 mation parameter and shear rate results:

The deformation of an initially spherical vesicle is de-
scribed by the Taylor deformation parameizr

4D 647k,

whereL andB are the lengths of the major and minor axes y= exp(

of the deformed vesicle, respectively. Figure 1 shows a sche- san 1T
matic image of the projection of a deformed vesicle. The
average vesicle shape in a shear flow can be written as

D?|. (21)
Fits of Eq.(21) to the experimental data give the, andk,
values.
(r(6,¢))=r"+2r'D sirf sing cosp, (16)
Ill. EXPERIMENT

where the effective radius’ depends slightly o®. This is L . . -
the theoretical shape of an elastic capgoleliquid drople} f D|Tyr[(sjtogl—p;osiphﬁigﬂylﬁh(_)tl|r(11e K.I'p'gs are dpurchaseg
for small deformations in shear flo[t4]. According to Eq. rom Lipi roducts - Jhited ringdom and are use

(1), this shape can be represented by a linear combination (}\qithou_t further purific_:at_ion. The vesicles are prepared with a
spﬁerical harmonic functions ydration method similar to that of Reeves and Dowben

[17]. A lipid solution in a mixture of chloroform and metha-

F0,d.t)=al 1+ UpYod 6,B)+ Uy Yo (6, nol is dried by evaporation. The remaining film is gently
(6.4.0)=al 0oYoo 0. 4) + Uz -2Y2-2( 0. ¢) brought in contact with distilled water, a low-ionic salt solu-
+UyY20(6,0)], (17)  tion, or another nonionic solution. The lipids swell by the

intake of water and with time giant vesicles are formed spon-
with ugg, Uy —, andu,, functions of the deformation param- taneously.
eter. With the conserved vesicle volume assumption for this The main advantage of this method is that vesicles with
shape, the apparent vesicle area is relateld through diameters of more than 5@m can be formed. Furthermore,
the method is very simple. The main drawback is that mul-

A.—As 8D? 1g tlamellar vesicles and, depending on the conditions, nonve-
A 15 (18 sicular structures are formed in addition to unilamellar
vesicles.
which follows directly from Eq.(3). To first order in the We have stimulated the formation of unilamellar vesicles

relative excess area, the quantith.A)/A; equals A,  in a way similar to the synthesis described #8]. The sur-
—A;)/A. The substitution of Eq.18) into Eq.(14) gives the face of a thin Teflon disk with a 1.6 mm diameter is rough-
coupling between our experiment and the undulation theoryened with emery paper. It is put in a glass bottle and kept at

Next the relation between the deformation parameter an87 °C. About 0.05 ml of a 10-mg/ml DMPC solution is
shear rate remains to be evaluated. We have derived an espread out across its surface and the chloroform-methanol
pression based on the work of Oldrojt,16. His model  mixture evaporates almost immediately. The film is next
describes the viscoelastic behavior of a monodisperse dispetified for a few hours. Then the disk is covered gently with a
sion of elastic capsules with negligible wall thicknesses thafew centimeters of distilled water at 37 °C. The sample is
are immersed in a Newtonian liquid. It is a cell model basedstored for 24 h at 37 °C. After a few hours a white cloud can
on Stokes's equations and is valid for small deformationsbe observed. This covers the entire Teflon disk. It grows to a
The shape of a single deformed vesicle in a steady flow ishickness of about 1 mm over 24 h. The vesicle cloud is
recovered by taking the limits of zero vesicle volume frac-dispersed in water by gently shaking the sample. This dis-
tion and zero frequency. A straightforward calculation givespersion is further diluted before use.
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FIG. 3. Deformation parameter of the vesicle from the previous
example.

orientation and tank treading is observed.

Our observations agree with observations reported in lit-
erature for emulsion droplets, red blood cells, and synthetic
capsules. The deformation of an initially spherical vesicle

FIG. 2. Examples of a deformed vesicle with a G radi-  reSembles the deformation of an emulsion drop. The flipping
us: (@ =00 s% (b y=1.0 s (¢ y=2.0 s% (d) y Mmotion of nonspherical vesicles also has been observed when
=4.0 s (e y=6.0 s, (f) y=8.0 s, (g) y=10.0 s%, (h) a sufficiently small shear stress is applied to red blood cells

y=12.0 s and(i) y=15.0 s*. (see, e.g.[19]), for which a similar transition to a steady
deformed shape with a fixed orientation, and tank treading,
V. RESULTS are also observed. The oscillating behavior has also been

observed with synthetic capsulEs].
A. Observation of deformed vesicles

The vesicles can be distinguished into two grou@s: B. Application of the deformation model
ye_\s_icles that are_initially spherical artill) vesicles that are A typical result for the shear rate dependence on the de-
initially nonspherical. formation parameter of an initially spherical vesicle is given

(i) At low shear rates, the deformation of an initially jn Fig. 3. This is the same vesicle that is shown in Fig. 2. The
spherical vesicle is too small to observe anything but a rotapsssiple uncertainty is determined by the size of the vesicle
tion of the vesicle. At sufficiently high shear rates it deforms,yiip, respect to the size of the window of observation. The
into a steady shape with a fixed orientation. For small deforyeformation parameter is a nonlinear function of shear rate.
mations this orientation is about 45° with respect to thepe least-squares fit to E(1) is shown. We have measured
streamlines. The orientation decreases with increasing sheg{e deformation of 26 vesicles that were initially spherical.
rate. We observe tank treading: The membrane circulategor each vesicle we have obtained the bending rigidity and
around the interior of the vesicle. An example of deforma-he effective surface tension of the undeformed vesicle. The
tion of an initially spherical vesicle is given in Fig. 2. With a bending rigidities are displayed in Fig. 4. For convenience,

radius of about 55um it is one of the largest vesicles used. g plot the bending rigidity versus the vesicle radius. We see
The vertical direction in the pictures is the radial direction in¢nat the experimental error can be rather large.

the gap. The inner cylinder is situated at the upper side and

the outer cylinder at the lower side of each picture. The fluid

at the upper side moves to the left and at the lower side it

moves to the right. These images have been digitized with a

frame grabber and the quality of the bit maps has been im- &
proved.

(ii) At low shear rates, an initially nonspherical vesicle
deforms slightly and undergoes a periodic flipping motion
comparable to the motion of rigid ellipsoids. The vesicle
rotates around its center, but the angular velocity depends or
its orientation with respect to the streamlines. When the
shear rate is increased, the vesicle starts to oscillate while it
is still rotating. The deformation parameter is now a periodic
function in time and is largest when the orientation is about °s 10
45° and smallest when it is45°. As is the case with ini- a {um
tially spherical vesicles at sufficiently high shear rates, the
vesicle changes into a steady deformed shape with a fixed FIG. 4. Bending rigidity of 26 vesicles.
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FIG. 6. Effective surface tension of the undeformed vesicle.

FIG. 5. Distribution of the bending rigidity.

gible dilatation is correct. The increase of the real area due to

Representing each value kf by a normalized Gaussian dilatation is given by

probability distribution function with a width determined by AAy 0= 05

the uncertainty ink., we obtain the distribution of Fig. 5 A k- (22)
when we add up all distributions. This distribution suggests

the presence of a discretization in the possible values of the, . .

bending rigidity, where the first peak may be due to un"a_theraturei\{alues of the dl-lz.;\tatlon modulus are on thg order
mellar vesicles, the second due to bilamellar vesicles, and Y 0.1 Nm = We have verified those values with a micropi-
on. Thus, for unilamellar DMPC bilayers, we obtakg 8eggeNﬁ])feelmce§rE se_é24]. fV\ée fg;nd (\j/allu4es (t)rf1 abtt_)_ut
=3.0-0.3kT=(1.3+0.1)x10°2J. This is somewhat : parison of Eqs(22) and (14) with esti
lower than the literature values féx: (3.5-6.5)x10°20] Mates Ofge, o5, and « shows that the increase of area
at 26 °C[20], 5.6x10 2 J at 29 °C[21], 11.5<10 2 J at induced by dilatation is at least one order of magnitude

30 °C[22], and 24<10~2 J at 26 °C[23]. The second lit- smaller than the apparent area increase. Furthermore, we

erature value was determined from a micropipette experigoncmde that our assumptid§) holds for ourk; and o

ment and the other values were obtained with vesicleyalues' Thus application of E¢14) is allowed in our case.
contour spectroscopy. For both methods also a distinction
between unilamellar and multilamellar vesicles was also
made. In the vesicle-contour spectroscopy experiments a dis-
tribution like that in Fig. 5 was found. These experiments We have measured the deformation of giant DMPC bi-
result in sharper peaks due to a smaller experimental errotayer vesicles in shear flow. The measurements have been
Duwe and SackmanfR2] observe that small amounts of a carried out with a counterrotating Couette apparatus that we
short bipolar lipid may reduce the bending rigidity down to developed recently. The qualitative deformation behavior of
the order of one kT. The only possibility that might explain initially spherical vesicles corresponds to that of emulsion
our relatively lowk. value is the possible presence of tracedroplets. The qualitative deformation behavior of initially
impurities in our lipids. We have tested the lipid batch with nonspherical vesicles corresponds to that of red blood cells
thin-layer chromatography and observed a weak second spaind synthetic polymeric capsules.
indicating the presence of a small fraction of impurities. In  We have developed a simple model that describes the
addition, we have carried out a micropipette aspiration exdeformation parameter as a function of shear rate. It is a
periment, which resulted in comparable low values kgr combination of a linear theory of liquid droplets with an
while the dilatation modulus also turned out to be some- elastic interface and a theory that describes the vesicle inter-
what lower than the literature valug®l]. This experimentis face in terms of thermal undulations. From this model it
described in Ref{24]. becomes clear that at low shear rates the deformation behav-
We calculated the effective surface tensieg and the ior is mainly due to the dynamics of the undulating surface,
results are presented in Fig. 6. The values range fronf 10 while dilatation of the surface is negligible.
to 10 > Nm~1. Kummrow and Helfrich[25] measured the We have estimated the bending rigidity to kg=(1.3
deformation of lipid vesicles under the influence of an elec-+0.1)x 10 2°J. We learned from the distribution of the
tric field and determined the effective tension for separatdending rigidities for the separate vesicles that many of them
vesicles. These values are on the order of2lm™. They  are not unilamellar. Multilamellar vesicles may be expected
mention that vesicles look rigid abowe=10"°% Nm™%, i.e., because of the nature of the preparation method. The obser-
the thermal undulations are not visible to the eye, as was theation of a discretization in the bending rigidities for each
case for our vesicles. vesicle has also been observed in various experiments that
It is possible to determine the effective tensierduring  were reported in literature. In future experiments, purified
deformation with Eq(14). At most, it is one order of mag- lipids need to be used for determining the influence of im-
nitude larger thanrs. Therefore, the assumption of negli- purities in the bilayer on the bending rigidity.

V. CONCLUSIONS
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